
Supporting Sound Multi-Level Modeling

Specification and Implementation

of a Multi-Dimensional Modeling Approach

Thomas Kühne c,∗, Manfred A. Jeusfeld d

cVictoria University of Wellington, Wellington, New Zealand
dUniversity of Skövde, Skövde, Sweden

Abstract

Multiple levels of classification naturally occur in many domains. Several multi-
level modeling approaches account for this, and a subset of them attempt to
provide their users with sanity-checking mechanisms in order to guard them
against conceptually ill-formed models. Historically, the respective multi-level
well-formedness schemes have either been overly restrictive or too lax. Orthog-
onal Ontological Classification has been proposed as a foundation for sound
multi-level modeling that combines the selectivity of strict schemes with the
flexibility afforded by laxer schemes. In this article, we present the second
iteration of a formalization of Orthogonal Ontological Classification, which we
empirically validated to demonstrate some of its hitherto only postulated claims
using an implementation in ConceptBase. We discuss the expressiveness of the
formal language used, ConceptBase’s evaluation efficiency, and the usability of
our realization based on a digital twin example model.

Keywords: conceptual modeling, multi-level modeling, well-formedness,
integrity constraints, modeling anti-patterns

1. Introduction

Modeling languages for conceptual modeling differ by the level of support
they provide for modeling domains with multiple classification levels; specifi-
cally how explicitly they represent deep domain classification within models.
A long history of modeling mechanisms that attempt to support the modeling
of multiple classification domain levels includes materialization [1] and power-
types [2], both implying concepts that go beyond individuals and their types.
Telos [3] pioneered support for an unbounded number of classification levels and
DeepTelos [4] added support for deep characterization [5].

∗Corresponding author
Email addresses: tk@ecs.vuw.ac.nz (Thomas Kühne),

manfred.jeusfeld@acm.org (Manfred A. Jeusfeld

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9421-8566
tk
Typewritten Text

tk
Typewritten Text
Postprint of the DKE article 102481 at https://doi.org/10.1016/j.datak.2025.102481

https://doi.org/10.1016/j.datak.2025.102481

Unfortunately, having to manage more than two classification levels increases
the potential of creating ill-formed models, i.e., models that cannot be given a
sound interpretation. It has been argued that the complexity of contemporary
conceptual modeling is akin to the complexity of programming large computer
systems and therefore analog complexity management strategies are needed [6].

A well-known discipline within the area of multi-level modeling [7] for en-
forcing sound models is “strict metamodeling” [8], which is widely accepted to
be highly selective, i.e., highly discriminative against ill-formed models, but has
been equally widely criticized for being too inflexible [9, 10, 11].

Multi-dimensional multi-level modeling (MdM), based on the notion of “Or-
thogonal Ontological Classification” [12], has been proposed as a multi-level
modeling paradigm that claims to enjoy the same selectivity as “strict meta-
modeling” but without incurring the latter’s downside of requiring modelers to
employ workarounds for several commonly occurring modeling scenarios. How-
ever, the initial description of MdM in [12] was informal only, i.e., did not
include verification or validation of its claims.

As ConceptBase had been successfully used to formalize the multi-level
modeling approaches DDI [13], DeepTelos [4], and MLT∗ [14], we set out to

• develop a formalization of MdM,

• investigate whether ConceptBase’s deductive specification language is
sufficiently expressive to support this formalization,

• examine ConceptBase’s efficiency when supporting MdM, and

• empirically validate some of the MdM claims.

In this article, we first further motivate the need for well-formedness checking
of models featuring multiple levels of domain classification and then briefly
compare two existing approaches to MdM [12] in Section 2. We subsequently
present an MdM formalization using many-sorted first-order logic in Section 3
and follow with a description of an implementation of the formalization using
ConceptBase in Section 4. Section 5 presents a digital twin scenario, on which
we base the performance analysis of our implementation in Section 6, comparing
three alternatives to check well-formedness using ConceptBase. We precede
our conclusions with a discussion of our formalization and its implementation
in Section 7.

This article is an extended version of “Sanity-Checking Multiple Levels of
Classification - A Formal Approach with a ConceptBase Implementation” [15].
It addresses the then open question of whether ConceptBase is able to realize
the checking of the “level-respecting” property [16, 12, 15], presents a formaliza-
tion update that considerably extends the range of models that can be rejected
as ill-formed, contains an improved discussion on constraints vs queries, better
documents how our implementation is embedded within ConceptBase, adds
an example model that demonstrates the ConceptBase implementation, and
reports on the evaluation efficiency of our implementation.

3

2. Sanity Checking

Enforcing well-formedness requirements on models or programs is a well-
established technique to ensure that the latter have a sound semantics. In
particular, well-formedness requirements have been effectively used as precon-
ditions to the analysis, interpretation, execution, etc., of models, preventing
semantics implementations from tripping over problematic structures such as
circular definitions, dangling references, etc.

Beyond serving this purpose, however, well-formedness constraints may also
be used to alert users to structures that would not necessarily create problems
for semantics implementations, but instead represent conceptual issues such as
performing a category mistake. Such structures are syntactically valid but logi-
cally flawed or inconsistent and are typically the result of ostensibly sound local
contributions that unintentionally add up to an unsound model. In particular
domains with multiple classification levels are more challenging with respect to
avoiding conceptual issues in user models. In principle, such conceptual issues
are harder to identify than violations of straightforward structural requirements
since they technically involve the semantics of concepts.

Providing respective solutions is becoming increasingly important due to the
dependence of societies on reliable data and the significant amount of higher-
order concepts naturally arising not only in specialized domains such as biology,
or process metamodeling, but also in such commonplace domains as covered by
UNICLASS classifications [17] and Wikidata [18, 19]. Brasileiro et al. reported
that in 2016 Wikidata contained 6,963,059 elements involved in instantiation
chains of lengths three [18], testifying to the presence of domains which require
more than two conceptual classification levels.

Profession

Scientist

Tim Berners-Lee

Figure 1: Semantically Flawed Model

2.1. Detecting Ill-Conceived Conceptualizations

Consider Figure 1 which, using UML class/object diagram notation [20],
shows a condensed version of a modeling scenario that was part of Wikidata
in 2016 [18, Figs. 3 & 4]. We use UML’s dependency relationship to denote
“instanceOf”, e.g., Tim Berners-Lee is declared to be an instance of Scientist.

4

The rightmost “instance-of” relationship can be derived from two Wikidata
claims: First, that Tim Berners-Lee is a scientist and, second, that “Scientist”
is a subtype of “Profession”. From these claims one can conclude that Tim
Berners-Lee is a profession, which obviously does not make sense, hence the dif-
ferent coloring of this implied “instanceOf” relationship. Dadalto et al. observed
that Wikidata no longer supports this particular incorrect inference, but that
this is not a result of applying a general solution to eradicate all such issues [19].
Equivalently ill-formed model fragments, e.g., a certain “Frank Hilker” being
inferable as a “Position” are still pervasive in Wikidata, affecting many areas
including biology, gastronomy, awards, professions, and sports [19]. In order to
detect such issues in Wikidata, Brasileiro et al. presented three “Anti-Patterns”
that can identify ill-formed model fragments, such as the one in Figure 1. “Anti-
Patterns” can be thought of embodying a modeling inconsistency in the form of
a graph pattern that, if they match a model fragment, identify the latter to be
ill-formed. Brasileiro et al. found that 15,177 Wikidata elements were involved
in “Anti-Pattern 1”, and 7,082 were involved in “Anti-Pattern 3” [18].

In general, such nonsensical model fragments cannot be mechanically de-
tected without attaching semantics to the concepts involved and, based on those
semantics, computing that a claim is made involving incompatible concepts.

Fortunately, however, nonsensical models like that in Figure 1 can still be
mechanically detected without having to attach rich semantics to the concepts
involved. For instance, by associating “order”-values to the concepts, e.g., by
categorizing Tim Berners-Lee as an order-0 concept and Profession as an order-2
concept, it becomes apparent that the former cannot be a direct instance of
the latter. Likewise, a specialization relationship between an order-1 concept
Scientist and an order-2 concept Profession is equally unsound with respect to a
set-theoretic interpretation of the model fragment.

Having to manually assign order values to each model element would be
onerous; however, even in the absence of such information, the scenario in Fig-
ure 1 can still be identified as making unsound claims based on its inconsistent
relationships. The “instance-of” relationship between Scientist and Profession is
necessarily incompatible with the simultaneous claim that the former is a sub-
type of the latter, regardless of the absolute order values associated to these
concepts. There is an inherent contradiction in instantiation requiring the two
order values to differ by one and specialization requiring them to be the same.

The above explains the utility of “Ontological Anti-Patterns” that can be
used to detect such ill-formed scenarios [6, 18]. In contrast to such a pattern-
based scheme, the approach underlying MdM was not arrived at by mining data
for problematic patterns; rather its well-formedness constraints originate from
the motivation to ensure that models have a sound set-theoretic interpretation.

2.2. Previous Attempts

An early attempt to exclude ill-formed user models in the context of modeling
with multiple levels of abstraction is “strict metamodeling” [8, 21]. Based on a
single simple principle, it rules out a huge class of conceptual errors, including
those characterized by the anti-patterns used by [18]. The downside of its very

5

conservative nature is that it also forbids users from adequately modeling a
number of naturally occurring domain scenarios. The latter force users of “strict
metamodeling” to employ workarounds that lead to “unnatural” solutions [22,
section 8.1] or a duplication of elements [23], which not only add complexity of
their own but also necessitate the introduction of additional constraints.

Many approaches aim to avoid the aforementioned downsides by using var-
ious concepts. The one most founded on ontological correctness is Almeida et
al.’s MLT∗ which supports the adequate modeling of more demanding domain
scenarios through the use of orderless types [24, 25]. While a disciplined use
of the approach retains sanity-checking abilities for a large proportion of a user
model, the remaining part, involving orderless types, cannot be fully checked
anymore. Some users may hence unintentionally exploit orderless types to create
unsound models, thus undermining the rigor that MLT∗ otherwise supports.

It could be argued that MdM similarly provides users with an escape route
of simply adding yet another modeling dimension, whether justified or not.
However, first, a user can never make a claim that a type classifies two elements
with different orders while belonging to the same sub-domain as these elements.
A user trying to use another modeling dimension simply as a workaround and
then attempting to still establish a common root, will be prevented from doing
so by various MdM constraints. Second, more often than not, introducing
a different dimension will result in an accurate model. To the best of our
knowledge all examples that have been given for orderless types, actually are
best understood as involving two different modeling dimensions.

Note that MdM targets the modeling of natural user domains, such as those
formed by physical objects occurring in the real world. To model linguistic
domains, e.g., the OMG’s MOF with its dual nature as a top-layer and repre-
sentation format [26], mechanisms like orderless types could be considered to be
more suitable, but a full discussion of the merits of orderless types vs orthogonal
ontological classification is out of scope for this article.

2.3. Orthogonal Ontological Classification

“Multi-Dimensional Modeling” (MdM) based on the notion of “Orthogonal
Ontological Classification” claims to fully retain the sanity-checking capabilities
of “strict metamodeling” without incurring its downsides (cf. Section 2.2), while
avoiding exploitable loopholes [12]. It claims to retain the same rigor for local
hierarchies, referred to as “classification clusters”, and argues that inter-cluster
relationships cannot give rise to conceptually ill-formed models. It addresses
challenging scenarios in which elements are ostensibly classified by multiple
classifiers of different order (cf. Figure 2(b)), by maintaining that such over-
lapping classifications are best understood as occurring from different separate
dimensions (cf. Figure 2(c)), using a “separation of concerns” approach.

Figure 2(a) shows a normal multi-level modeling hierarchy in which Susan’s
type, i.e., Corgi is typed by a higher-order type Dog Breed. Figure 2(a) shows
potencies as opposed to absolute order values (cf. [27]), however, for our purposes
here, we may assume that the potency values correspond to order values, i.e.,
that Susan is a pure object.

6

Corgi1, 0

Susan0, 0

F
a

v
o

rite
 T

h
in

g
1

(b) Potency Conflict (c) Multi-Dimension Hierarchy

Favorite Thing?

Corgi1

Susan0

(a) Linear Hierarchy

Dog Breed2

Corgi1

Susan0

Figure 2: Traditional vs Orthogonal Classification

Figure 2(b) features a concept Favorite Thing that would be considered an
orderless type in MLT∗ [24, 25], since it has both an order-zero instance Susan

and an order-one instance Corgi. Hence, the potency of Favorite Thing is shown
as “?” since its classic potency (cf. [28]) would have to be either 1 or 2 for Corgi

and Susan respectively but cannot accommodate both cases at the same time.
Figure 2(b) resolves this issue by considering Favorite Thing as classifying the
two other concepts from a different dimension. With respect to this dimension
(note the use of a different color for the respective instance-of relationships),
Favorite Thing can now consistently be a potency-one classifier for two potency-
zero concepts. Note Susan’s two zero potency values which have the same color
as the respective instance-of relationships.

The reason for the scenario shown in Figure 2(b) being unable to support a
consistent order/potency to Favorite Thing is that it forces all three elements into
a single linear classification hierarchy. Therefore, under “strict metamodeling”
this scenario would be deemed as illegal whereas MLT∗ would require one to
declare Favorite Thing as an orderless type. MdM resolves the tension on Favorite

Thing by acknowledging that the latter does not extent the Susan-Corgi hierarchy
(a proper extension would be DogBreed, cf. Figure 2(a)), but rather represents
an orthogonal classification on both Susan and Corgi. It is worth pointing out
that even though Susan has multiple classifiers, this scenario is not an example
of traditional multiple classification in which both classifiers belong to the same
classification hierarchy, e.g., as in an amphibious vehicle being classifiable si-
multaneously as a car and a boat, with both of the latter belonging to a domain
of vehicles. In Section 5 we present an example model making use of MdM,
demonstrating the latter’s utility for organizing model content.

Although the original description of MdM [12] was focused on precise well-
formedness criteria for models and elaborated on a number of constraints to be
enforced, it was informal and had no implementation to back up its ideas. We
therefore set out to investigate the suitability of ConceptBase for realizing an
MdM implementation, both in terms of the expressiveness of its specification
language and the efficiency of its optimized deductive database engine.

7

3. Formalization

Our formalization of MdM in ConceptBase is realized in O-Telos (see
Section 4), but for better accessibility we present a technology-independent for-
malization in this section. It covers a deliberately restrictive version of MdM
(as outlined in [12, section 4.3]) which includes characterization potency [28].
We do not cover element features (e.g., attributes), since our focus is on val-
idating MdM’s main principles, which concern element relationships. In the
following presentation of our formalization we typically refrain from elaborating
the underlying rationales for the well-formedness conditions; these can be found
in [12]. Whenever we deviated from the informally described well-formedness
conditions of this source, we state our motivation and reasoning.

The model structures we are concerned with are graphs over elements. These
“elements” are sometimes referred to as “clabjects” [8], because they can play
the role of a class or an object, or both at the same time. These elements are
connected with relationships, of which we only cover classification and gener-
alization relationships here, as other relationships kinds are not restricted by
MdM. Since elements have potencies (cf. [29]) that belong to dimensions (cf.
Figure 2 & [12]) and classification/generalization relationships belong to dimen-
sions as well, we use the many-sorted signature of equation 1.

Σ = (E,D,A, ρ) (1)

E = {ei | ei ∈ Elements} (2)

D = {di | di ∈ Dimensions} (3)

A = {ai | ai ∈ Attributes} (4)

ρ = {:d,≺d, .} (5)

We denote an element e with potency p in dimension d as epd . If e2 is a direct
classifier of e1 in dimension d, we use e1 :d e2. If e2 is a direct generalization of
e1 in dimension d, we use e1 ≺d e2. Note that both “:” and “≺” refer to respec-
tive abstract syntax relationships occurring in a model, i.e., their semantics is
defined by a model interpretation which is defined separately, i.e., independently
of syntactic well-formedness constraints. We use the combination e1 :≺d e2 as a
shortcut for representing that e2 is either a direct classifier or a direct general-
ization of e1. This shortcut is used in the formalization only, i.e., MdM does not
support a respective modeling relationship. We use a “+” superscript notation
to denote sequences of relationships of at least length one. For instance, ef :+ el
represents the scenarios ef : el, ef : e1 : el, ef : e1 : e2 : el, etc. Building on “:d”
and “≺d”, e1 :d e2 applies whenever e1 :d e2 ∨ ∃ e3 e1 :d e3 ∧ e3 ≺+

d e2, i.e.,
“e1 :d e2” applies if e1 is directly or indirectly classified by e2 in dimension d.

In the following, we use labels for our well-formedness constraints that corre-
spond to the labels C1-C4 suggested in [12, section 4.3]. Since the latter do not
cover characterization potency, we use a C0 prefix for our respective constraints.

The first characterization potency constraint C0a covers two aspects: First,
upon instantiation potency must decrease (not necessarily exactly by one [28]),
and second, only non-zero potency elements can be instantiated.

8

Instances must have a potency that is strictly lower than that of their classifiers
and classifiers must have potencies greater than zero.

∀ e1,2, p2, d e1 :d e
p2d
2 → ∃ p1d e

p1d
1 ∧ 0 ≤ p1d < p2d (C0a)

Note the omission of any potency information on e1 in the premiss, since we
want to support underspecification of element potency. If we had formulated
constraint C0a to use e

p1d
1 in the premiss already then the constraint would have

only applied to instance-of relationships where both elements feature explicit po-
tency values. Our approach here ensures that all instance-classifier pairs, where
the classifier specifies a potency, obey the rules of characterization potency.

The second characterization potency constraint C0b requires that subtypes
must not have a potency that is lower than the supertype potency.

Subtypes must have an equal or higher potency than their supertypes.

∀ e1,2, p1,2, d e
p1d
1 ≺ e

p2d
2 → p1d ≥ p2d (C0b)

Constraint C1, informally described and named disjoint feature sets in [12],
is designed to avoid having to disambiguate access to element features in case
multiple classifiers of an element define a feature with the same name. This is not
anMdM-specific requirement but needs to be in place for any language that does
not provide disambiguation mechanisms for resolving duplicate feature (e.g.,
attribute) contributions from multiple sources (classifiers and generalizations).
In the constraint definition below, the pattern (e1.a) : e2 represents the existence
of an e1 feature a with type e2.

Elements that classify or generalize the same element, must not define features
with the same name.

∀ e0,1,2,3,4, a1,2
(e0 : e1 ∨ e0 ≺+ e1) ∧ (e0 : e2 ∨ e0 ≺+ e2) ∧
(e1.a1) : e3 ∧ (e2.a2) : e4 ∧ a1 = a2 → e1 = e2

(C1)

Note that even though we allow to optionally exclude multiple generalization
within one dimension (via constraint C3b), we still need to account for the po-
tential presence of multiple generalization in the above constraint, since a user
may not make use of constraint C3b, or multiple generalization may occur in-
volving supertypes from different dimensions. Although the latter is technically
prohibited for this particular MdM language design by constraint C2c, it can
be a good idea to redundantly prevent certain scenarios to make the constraint
system as a whole more robust against changes to individual constraints that
may result in undesirable consequences.

Constraint C2, named bottom-level overlapping in [12], ensures that there is
a unique dimension, which an element that is classified from multiple dimensions
can be instantiated into, thus obviating the need to specify a dimension when
instantiating such an element. Note that here, “bottom-level”, does not refer to
an absolute bottom level of a hierarchy, but merely to the bottommost possible
(potency-zero) position of elements in instantiation chains. We cover this aspect
with our constraint C2a.

9

Elements with potencies in more than one dimension must not have more than
one non-zero potency value.

∀ e0, p1,2, d1,2 e
p1d1
0 ∧ e

p2d2
0 ∧ d1 ̸= d2 ∧ p1d1

> 0 → p2d2
= 0 (C2a)

Note that potency values of zero prevent instantiation (cf. constraint C0a), and
that we do not specify a classifier for e0 since we want to allow for e0 to be
a top-level element with a manually assigned potency. We are thus deviating
from the “bottom-level overlapping” focus of the original C2 constraint since
we deemed that the constraint was in essence about preventing the potential of
instantiation into more than one dimension, as opposed to only achieving this
for elements that have explicit classifiers.

Furthermore, since it is possible to omit potency specifications for the pur-
poses of under-specification, an element could potentially be instantiated into
multiple dimensions without constraint C2a preventing such a scenario, since the
latter only covers cases featuring explicitly specified potencies. Constraint C2b

below addresses this by ensuring that elements are actually only instantiated
into one dimension only, even in the absence of any potency information.

All instantiations from a classifier must be into the same dimension.

∀ e1,2,3, d1,2 e1 :d1
e3 ∧ e2 :d2

e3 → d1 = d2 (C2b)

The next constraint, C2c, is not part of the MdM well-formedness sugges-
tions, however, we decided that a complement to constraint C2a was useful
that addresses the reception of type facets through specialization. Since con-
straint C2a restricts elements to have a type facet from one dimension only, it
makes sense to prohibit elements from receiving type facets via specialization
from any other dimension.

Elements participating in multiple dimensions must not entertain generalization
relationships in their potency-zero dimensions.

∀ e1,2, d1,2
e1 ≺d1

e2 ∧ memberd2
(e1) ∧

d1 ̸= d2 → ∃ pd1 e
pd1
1 ∧ pd1 > 0

(C2c)

where memberd(e) =

∃ e1 (e :d e1 ∨ e1 :d e ∨ e≺d e1 ∨ e1 ≺d e)

Note that the “member”-predicate does require elements to have an explicit
potency in a dimension. Dimension membership is solely acquired via respective
relationships. This supports the underspecification of potency values, while
simultaneously allowing checking for inappropriate type facet acquisition from
dimensions that an element cannot be instantiated into anyhow.

Constraint C2c works in tandem with constraint C2a; the latter restricts the
non-zero potencies of an element to a single dimension, so by demanding that
there is a non-zero potency value for a dimension that an element entertains
a generalization relationship with, no generalization in another dimension may
exist in which the element has a non-zero potency.

10

The C3 constraint, named connected classification clusters in [12], requires
all elements within a dimension to form a monolithic “classification cluster”, i.e.,
it prohibits classification clusters, constituted by instanceOf relationships, that
belong to the same dimension, but are not connected to each other via classi-
fication relationships. In our formalization, constraint C3c covers this aspect,
however, since in a previous version of our formalization ([15]) we additionally
had constraints C3a & C3b, we briefly discuss them here.

Constraint C3a prohibited multiple classification within one dimension.

Elements must not have more than one classifier within a dimension.

∀ e0,1,2, d e0 :d e1 ∧ e0 :d e2 → e1 = e2 (C3a)

We introduced this constraint since, at the time, we did not have a Con-

ceptBase formalization of the “level-respecting” property (cf. constraint C4c).
Because we since addressed this shortcoming, we no longer need to enforce con-
straint C3a, as it is technically too strong, i.e., prohibits some sound models.
Instead of dropping constraint C3a altogether, we replaced the constraint with
a query that users can optionally use to check for occurrences of multiple clas-
sification, in case they want to rule it out or just detect it for some reason.

The same reasoning applies to constraint C3b which is about multiple gen-
eralization, rather than multiple classification. Although the original C3 for-
mulation of [12] does not imply that multiple generalization (aka, “multiple
inheritance”) needs to be prohibited, we defined a constraint C3b, in the same
vein as constraint C3a, thus allowing users to optionally prohibit or just detect
multiple generalization. Again, our current implementation does not enforce
the constraint, but allows optional invocation in the form of a query.

Elements must not have more than one supertype within a dimension.

∀ e0,1,2, d e0 ≺d e1 ∧ e0 ≺d e2 → e1 = e2 (C3b)

The main “monolithic cluster” aspect of the original C3 constraint is taken
care of by our constraint C3c:

Dimensions must not lack a classification root.

∀ d (∃ e1, e2 e1 :d e2) →
(∃ e5 (∀ e3,4 e3 :d e4 → e3 :+d e5))

(C3c)

An earlier version of this constraint did not feature the initial check for the
presence of any elements participating in an instantiation relationship within a
dimension, which led to a model containing a dimension declaration but other-
wise being empty to be reported as violating constraint C3c. Since an empty
model trivially satisfies the requirement about the absence of disjoint classifica-
tion clusters, we augmented the formalization of constraint C3c accordingly.

If constraint C3a and constraint C3c are enforced in combination, they en-
sure that each dimension has a single unique classification root. Now that our
implementation no longer enforces constraint C3a, constraint C3c on its own
only ensures that there is at least one element from which all other elements

11

participating in classification relationships can be (deeply) instantiated from.
In other words, there is no longer a requirement that this element constitutes
a single unique root; other such roots may also exist. We decided that this is
appropriate in contexts in which multiple classification is supported, since the
main property – the absence of any isolated classification clusters within a di-
mension – is still ensured by constraint C3c. In particular, a classification forest
comprising disjoint trees is never allowed.

Note that constraint C3c, which actually realizes the C3 constraint of [12],
is not about rejecting unsound models, but in effect rather about discourag-
ing modelers from using orthogonal classification gratuitously, perhaps in ill-
conceived attempts to avoid the order consistency enforcing rules that apply
within a single classification dimension. Demanding that all classifiers within a
dimension are joined via relationships, will cause modelers to reconsider their
modeling choices, in case they cannot create a single classification cluster for
each dimension unless they establish relationships between classifiers that are
clearly unrelated to each other. As a result, constraint C3c is not enforced by
our implementation either, but is, like the other C3 constraints, meant to sup-
port the optional checking of models for properties that some modelers may
care about.

The final constraint C4 of [12], named sound meta-hierarchies, concerns gen-
eral well-formedness requirements that would apply outside a multi-dimensional
approach as well and correspond to—in spirit but not as restrictively—the reg-
iment established by “strict metamodeling” [8].

First, the graphs implied by models must be free of cycles with respect to
classification and generalization relationships [16].

The graph of instanceOf and specializationOf relations must be acyclic.
∀ e ¬(e :≺+ e) (C4a)

Through the use of “:≺+” we require every path with mixed classification and
generalization relationships edges to be acyclic, as opposed to only imposing
the constraint on pure classification and pure generalization paths respectively.
Unlike the original C4 constraint suggests, we do not restrict the context of the
constraint to a single dimension only. In combination, these two choices lead
to the rejection of a wider range of models with circular definitions, which we
consider to be ill-formed, according to the spirit of the original C4 constraint.

Second, an important component of the original C4 constraint is that gener-
alization relationships must not occur between elements of different order (i.e.,
of different set-theoretic classification power).

Elements in a generalization hierarchy must not have inconsistent orders.

∀ e1,2, d specConnectedd(e1, e2) → orderNotInconsistentd(e1, e2) (C4b)

where specConnectedd(e1, e2) =

(e1 ≺d e2 ∨ e2 ≺d e1) ∨
(∃ e3 (e1 ≺d e3 ∨ e3 ≺d e1) ∧ specConnectedd(e3, e2))

12

where
orderNotInconsistentd(e1, e2) =
(e1 = e2) ∨
¬(δ+d (e1, e2) ∨ δ+d (e2, e1)) ∧
(∃ e3 δ+d (e1, e3) ∧ δ+d (e2, e3) →
(∀ e4,5 δd(e1, e4) ∧ δd(e2, e5) →

orderNotInconsistentd(e4, e5)))

where δd(e1, e2) =

(e1 :d e2) ∨
(∃ e3 e1 :d e3 ∧ specConnectedd(e3, e2)) ∨
(∃ e3 specConnectedd(e1, e3) ∧ e3 :d e2) ∨
(∃ e3,4 specConnectedd(e1, e3) ∧ e3 :d e4 ∧

specConnectedd(e4, e2))

In the above, predicate specConnectedd holds if two elements participate in the
same generalization/specialization hierarchy. Predicate orderNotInconsistentd
holds in the absence of any relationships that imply order difference between
the two elements in question.

We chose the name “orderNotInconsistent”, rather than “orderConsistent”,
because we never aim to a) establish actual order values, nor do we ever b) prove
that two order values are the same. Our approach is to only look for explicit
information in the model that implies that the order values of two elements
cannot be the same. Many models should be considered incomplete and it
may just be the absence of an as of yet to be added relationship that prevents
recognizing that one concept cannot possibly have the same order as another
one. Outside a closed world assumption or having access to semantic definitions,
it is therefore not possible to ever positively confirm that the modeler intended
two elements to have the same order.

This approach of proving a negative is useful for MdM, which supports un-
derspecification of element order, and for any other modeling language which
may not feature an explicit “order” concept. We never require, assume, or
compute any absolute order values, we only establish implied relative order re-
lationships and check them for inconsistencies. Predicate orderNotInconsistentd
achieves this by using the δ relation which we could have named “orderProgeny”.
The relation δd(e1, e2) holds, if order(e1) = order(e2)− 1. The relationship def-
inition (cf. constraint C4b) satisfies this equation since it considers all patterns
in which e1 is one instantiation step removed from e2.

Third, the final component of establishing sound meta-hierarchies is to en-
sure that classification hierarchies are “level-respecting” [16]. The latter prop-
erty guarantees the absence of classification relationships that imply conflicting
order values for a single element (cf. Figures 1 & 2). As a consequence, elements
can be given a consistent level assignment, without requiring any level-jumping,
thus eliminating the lack of a sound set-theoretic interpretation of the classifi-
cation hierarchy. While constraint C4b aims at detecting order inconsistencies
between elements in the same generalization hierarchy, constraint C4c aims at
detecting inconsistencies within a classification hierarchy.

13

Common classifiers of an element must not have different orders.

∀ e0,1,2, d e0 :d e1 ∧ e0 :d e2 → orderNotInconsistentd(e1, e2) (C4c)

Note that the only way in which alternative instantiation paths between
two elements can be created is through the use of multiple classification. In a
pure tree-shaped classification hierarchy, it is not possible for any one element
to receive conflicting information about its order due to inconsistent classifica-
tion depths. This is why our constraint considers elements which have more
than one classifier. The constraint requires the respective classifiers to not en-
gage in relationships that imply that their order must be different. It does so
via predicate orderNotInconsistentd whose operands must (cf. the definition of
constraint C4b) either be the same element, or

1. are not (possibly deep) instances of each other, and

2. if they have a common (possibly deep) classifier then their paths to that
common classifier have equal length (only considering “instanceOf” rela-
tionships as steps).

It is worth noting that constraint C4c, by virtue of building on our δ rela-
tion, is not only considering pure classification hierarchies, but rather detects
inconsistencies in hierarchies with a mixture of classification and generalization
relationships. Hence, beyond checking consistency of pure instantiation path
lengths, the predicate actually checks for general order congruence.

4. Implementation

The motivation for realizing the technology-independent formalization of
MdM of the previous section using ConceptBase was fourfold:

1. the ability to apply constraints to numerous test models and example
scenarios provided a means to validate that our formalization captured
the intended meaning.

2. the implementation enabled empirical validation as to whether the claims
associated with MdM can be substantiated.

3. we wanted to investigate to what extent the MdM principles can be sup-
ported by ConceptBase.

4. measuring the implementation’s performance allowed insights into the fea-
sibility of using ConceptBase to support MdM and other languages em-
bodying similar principles.

4.1. ConceptBase and O-Telos

ConceptBase [30] is a deductive database system for managing models and
metamodels. Its data model is based on the O-Telos language [31, 32] and its
predicative specification language is based on Datalog with negation [33].

14

The specification language uses a closed world assumption and guarantees
terminating evaluations of –

rules predicates that can infer information, similar to Prolog rules,

constraints model integrity conditions which must always be satisfied, and

queries supporting the derivation of instances of so-called query classes.

Around 30 rules and constraints in ConceptBase define the O-Telos semantics
for instantiation, specialization, attribution, and relationships. O-Telos is sim-
ilar to the OMG’s MOF, in that O-Telos can both be used to (in an extended
variant or as is) directly represent user models, or to support the definition of
modeling languages, which in turn are used to represent user models [26].

4.2. Module Architecture

The implementation of MdM comprises three ConceptBase modules which
contain object definitions (called “facts” in logic), rules, constraints and queries.
Figure 3 shows the module hierarchy. Definitions in super-modules are visible
in sub-modules, allowing a user model to benefit from all definitions starting
with MultiDim up to System.

O-Telos axioms &

ConceptBase built-in classes

oHome
generic constructs for relational

properties (e.g., transitivity)

MultiDim

constructs

constraints

queries

Model 2Model 1

MDM constructs and deductive rules

supporting constraints & queries

MDM well-formedness rules

to be enforced unconditionally (optional)

MDM well-formedness rules

to be used on-demand (optional)

MDM models

System

Figure 3: ConceptBase module architecture for the MdM implementation

All facts and rules pertaining to MdM, which are contained in module Multi-

Dim, are therefore extending existing ConceptBase facts and rules and provide
the context in which user models can be defined and evaluated.

Users have a choice over using constraints within MultiDim, in case they
want to guarantee that their models cannot violate any well-formedness rules,
or, alternatively, use queries, in case they want to interactively and selectively
check well-formedness aspects of their models.

15

ConceptBase compiles the respective construct-, constraints-, and queries-
source files into its internal Datalog format, i.e. into Datalog facts and rules. All
source files for the modules are available from our MdM project website [34].

4.3. Realizing Multi-Dimensional Modeling with O-Telos

We had to make a fundamental decision whether to build on O-Telos’s
definitions for instantiation and specialization, or to define a new language defi-
nition with custom instantiation and specialization relationships. We opted for
the first alternative for the following reasons:

• MdM’s classification and generalization notions are compatible with O-
Telos as far as the scope of our MdM specification is concerned,

• it minimizes effort, allowing us to focus on MdM-specific rules, and

• it supports a seamless adoption of MdM principles to O-Telos.

Element

Dimension
Proposition

Integer
potency

memberOf

dimension

dimension

0..1

0..1

*

*

Figure 4: Structural embedding of MdM in O-Telos

Figure 4 shows how we structurally embedded MdM, with its “clabject”-
concept, named Element, into the O-Telos data model. Elements can be mem-
bers of multiple dimensions and have multiple potencies, one for each dimension
they participate in. The classification and specialization relationships (defined
at the most general class Proposition) also receive an optional dimension property.

With Element, we introduced an MdM-dedicated concept—which represents
the notion of a Clabject, i.e., a concept that can be an instance, a type, or both
at the same time [8, 29]—instead of building on the O-Telos Individual concept,
since we learned early on in our experiments that subjecting all O-Telos ob-
jects to the MdM well-formedness principles resulted in undesirable constraint
evaluation performance. This is due to MdM’s inclusion of classification well-
formedness and the fact that around 50% of predefined facts in ConceptBase

are classification-related. We therefore confined the application of MdM-specific
constraints to MdM-specific elements by letting respective quantified variables
in the constraints range over Element rather than the O-Telos Individual (cf.
Sections 6 & 7.2.2 on the performance of our implementation).

We used a total of 26 ConceptBase rules to support the definition of the con-
straints listed in Section 3, including the definition of the relations in Equation 5,
e.g., directInstanceOf/lab and directSpecializationOf/lab. Note the

16

use of an additional lab (short for “label”) rather than a dim (short for “dimen-
sion”) property. This reflects the fact that the dimension properties attached to
these relationships are dimension labels, i.e., the names of dimensions. The latter
are user-defined and our validation scenarios include labels such as Products,
Favorites, Activities, Assets, etc. These are labels of the explicit dimen-
sion objects Products, Favorites, etc., they are linked to (cf. Listing 2).

The “member” predicate used in constraint C2c (see Section 3) is defined by
two mdrules, one of which is shown in Listing 1, with the other one analogously
taking care of specialization relationships.

1 $ forall inst/InstanceOf x/Element dim/Dimension
2 (inst dimension dim) and (From(inst, x) or To(inst, x))
3 ==> (x memberOf dim) $

Listing 1: Rule mdrule1

The O-Telos class InstanceOf referenced in line 1 of Listing 1 classifies all
explicit instantiation relationships. Likewise, Dimension classifies all dimension
objects. With (inst dimension dim) we establish that the inst relationship
is linked to a dim dimension object.

The next two premisses (line 2 of Listing 1) establish that element “x”
participates in the instantiation relationship inst. From these, it follows (in
line 3) that element “x” is a member of dimension dim.

The rule in Listing 2 maps O-Telos instantiation to the MdM qualified
instantiation predicate (x instanceOf/lab c), where lab is the label of the
dimension in which the instantiation is defined. An analog rule exists for spe-
cialization.

1 $ forall inst/InstanceOfWithDim x,c/Element lab/Label dim/Dimension
2 (inst dimension dim) and Label(dim,lab) and
3 From(inst,x) and To(inst,c)
4 ==> (x directInstanceOf/lab c) $

Listing 2: Rule mdrule3

Of the nine constraints we defined, we show our implementation of con-
straint C2c in Listing 3, since it

• shows a usage of the custom-defined memberOf predicate (cf. Listing 1).

• exhibits the slight implementation inelegance of having to deal with both
dimension objects and dimension labels.

• is one of the richer constraints but still nicely demonstrates how readable
ConceptBase constraints are.

1 c2c: $ forall x,c/Element lab/Label dim/Dimension
2 (x directSpecializationOf/lab c) and
3 (x memberOf dim) and not Label(dim,lab)
4 ==> exists p/Integer (x potency/lab p) and (p > 0) $

Listing 3: Constraint C2c

17

Figure 5 shows a model which is rejected due to violating constraint C2c. Here,
Corgi is not allowed to inherit a type facet from Person while also receiving a
type facet from DogBreed; having two type facets from different dimensions is
not supported by the minimal MdM language design we adopted from [12].

Person0DogBreed2

Corgi1,0

Figure 5: C2c-violating model

If a user triggers constraint C2c by extending the model, the constraint’s
custom error message (see Listing 4) is output by ConceptBase, along with an
explanation detailing which elements are involved in violating the constraint.

1 MultiDimRules!c2c with
2 comment
3 hint: "Elements participating in multiple dimensions
4 must not entertain generalization relationships
5 in their potency-zero dimensions!"
6 end

Listing 4: Custom C2c error message

Listing 5 shows how constraint C4b (see Section 3), can be concisely formu-
lated in ConceptBase by making use of rules.

1 c4b: $ forall x,y/Element lab/Label
2 (x specConnected/lab y) ==> (x orderNotInconsistent/lab y) $;

Listing 5: Constraint C4b

Line 2 in Listing 5 specifies that if an element “x” is in the same generalization
hierarchy as another element “y” then those two elements must not have incon-
sistent order values. The symmetric and transitive specConnected relationship
is concisely defined by rules mdrule17 & mdrule18, each rule fitting in one line.
The predicate orderNotInconsistent, which is also used by constraint C4c,
is defined by two rules, mdrule25 & mdrule26, requiring two and four lines of
definition, respectively.

We separated constraint definitions from rule definitions by using different
files since it can be desirable to not enforce constraints, e.g., to allow inter-
mediate, not well-formed editing states during development, or when defining
negative validation examples. We were thus able to only include constraints if
and when we wanted, e.g., to confirm that models passed or failed validation.

4.4. C3 constraints as queries

ConceptBase allows the specification of constraints, which are always en-
forced, and/or queries, which can be run on demand (see Section 6). We have
implemented all constraints of Section 3 in both constraint and query form, to
give users both options, depending on preference.

18

Our default set of ConceptBase constraints excludes the three C3 con-
straints of Section 3 and provides them as queries only. Our reasons for doing
so are: a) these constraints do not rule out unsound models (cf. Section 3), and
b) their nature suggests modelers will be interested in being visually pointed to
violation occurrences (see Figure 6), rather than receiving violation reports.

Further research is needed concerning the merit of constraint C3c since non-
adherence clearly does not make a model unsound. However, running the re-
spective query may highlight disjointed classification clusters that might be
indicative of an indiscriminate use of orthogonal classification. Modelers would
thus be prompted to double check their modeling choices. If all highlighted
applications are correct, there will be no challenge in connecting them via gen-
eralization or classification. In some cases, if the latter is not possible, the
initial assumption that they all belong to the same classification dimension can
be corrected by separating subclusters into multiple clusters, each belonging
to its own distinct classification dimension. Figure 6(b) shows a ConceptBase

screenshot in which our query representing constraint C3c was used to identify
multiple classification cluster roots for a Process dimension in the model shown
in Figure 6(a). In this particular case, the hierarchies should be modeled using
different dimensions (e.g. Activities vs Actors) rather than combining them to
constitute a single cluster.

ActivityType

DesignCode

BobDesigns

(a) Disjoint classification cluster (b) Query Result

ActorType

SeniorDeveloper

Alice

Figure 6: Running a query in ConceptBase

4.5. ConceptBase Visualization Support

Beyond supporting the representation of MdM models and allowing them to
be checked against well-formedness rules, we also implemented some visualiza-
tion support. Element attributes and potencies are rendered below an Element’s
name, within the same visual element, instead of the standard ConceptBase

approach that visualizes every attribute on its own and draws links between
them and their owning elements.

Note the colored relationships in the ConceptBase screenshots (Figures 6
& 7). Modelers may specify RGB colors to be used to highlight dimension
membership for relationships or backgrounds for dimensions such as Animals

(see Figure 7 and Listing 6).

19

Figure 7: Screenshot: Explicit dimensions in ConceptBase

1 Animals in Dimension with
2 dimcolor col: "0,0,210"
3 gproperty bgcolor: "240,240,255"
4 end

Listing 6: Example dimension definition

Listing 7 shows one of the rules in the MultiDim module (cf. Figure 3), that
implement the coloring of instanceOf links.

1 colorrule1: $ forall inst/InstanceOf dim/Dimension col/String
2 (inst dimension dim) and (dim dimcolor col)
3 ==> (inst gproperty/edgecolor col) $;

Listing 7: Rule for assigning colors to instanceOf links

The visualization support of dimensions in the form of colored backgrounds
has, apart from providing a visual representation of the actual dimension objects
in the model, only a presentational role. Figure 7 shows an example model
featuring three dimensions. We omitted associations and links for clarity but
note that these could have crossed dimension boundaries (cf. Figure 10). Two
elements, Corgi & Susan, have classifiers in two dimensions and could have been
placed on the boundary between the dimensions they participate in. We chose
to place both elements solely into the Animals dimension, since that is where
their essential (as opposed to secondary) classifiers are, without making any
claims that this is a general guideline that should be followed.

All implementation source files and some of the models we used for validation
purposes—in source format but also as PNG files—are available at https://purl.
org/cbmdm [34].

20

https://purl.org/cbmdm
https://purl.org/cbmdm

5. An Example Model: Digital Twins

This section introduces an example model to a) illustrate the organizational
qualities of MdM, b) further demonstrate the ConceptBase implementation,
and, c) communicate the basis of our performance measurements (see Section 6).

With respect to the first purpose, we decided to pick a domain that naturally
features multiple modeling aspects and is suitable to illustrate modern devel-
opment practices. Production technology has evolved from mass production (a
single product model with many instances), to mass customization (a product
model with variation points with many instances per variant), and more recently
to mass individualization (each instance is described by a singleton type which
specializes upper level product types) [35]. For instance, the majority of all new
trucks models by Mercedes-Benz are custom-designs, i.e., are significant modi-
fications of a base model [36]. This trend to mass individualization coincides
with an increased usage of so-called digital twins. The latter are representations
of physical artifacts and both can appear in the same model, e.g., to support
the use of 3D modeling and simulation tools. Many artifacts in such domains
depend on each other, e.g. a software component on a simulation model. We
therefore chose the satellites domain as our example domain, taking inspiration
from [37]. Our choices were furthermore informed by the involvement of one
of the authors in a virtual engineering project, where the provenance of digital
artifacts is recognized [38]. Beyond dependency and provenance information,
artifacts may also feature ownership information. We therefore not only model
satellite representations, of both physical satellites and their digital twins, but
also artifact kinds and owner kinds, using MdM to separate these concerns.

5.1. Classification hierarchies and attributes

The partial model in Figure 8 shows the classification and generalization
relationships of our example model. The left hand side features the satellite
hierarchy (within dimension Satellites) including representations of physical and
virtual satellite instances (GioveA1 r1 & GioveA1 v1 respectively). The top con-
cept SatelliteModel has potency two (i.e., a maximum instantiation depth of two)
and defines an attribute plannedmass. The subclass GalieoModel adds two more
attributes. Its instance, GioveA1, is a particular Galileo satellite model but is
also characterized as a digital artifact by virtue of being an instance of DigitalAr-
tifact from the Artifacts dimension. Since GioveA1 is a digital artifact itself, rather
then being a classifier for digital artifacts, it has potency zero with respect to
that dimension and provides values for the version and lastupdate attributes. In
contrast, in the satellites dimension, GioveA1 has potency one (as it is a classi-
fier for satellite instances) and provides (type level-) values for the plannedmass,
plannedorbit and frequency attributes. The two instances of GioveA1, i.e., GioveA r1

and GioveA v1, represent a physical satellite and its digital twin respectively.
Only the latter is also characterized as a DigitalArtifact and specifies values for
the respective version and lastupdate attributes. Note how the elements within
the Satellites dimension that are also classified by elements in the Artifacts dimen-
sion, i.e., GioveA1, GioveA r1 and GioveA v1, are at different classification levels

21

Figure 8: Satellite model hierarchies and dimensions in ConceptBase

within the Satellites dimension, but share the same classification level (zero) with
respect to the Artifacts dimension. They also have in common that they provide
values for attributes from both dimensions.

The Artifacts dimension comprises more elements beyond DigitalArtifact to
support a fine-grained categorization of domain artifacts. For instance, Soft-

wareArtifact has an instance SatCtrlcomm, to be used as part of the control soft-
ware of a satellite, and SimulationModel has an instance DetumbA1v1 which is
employed to minimize the detumbling time of satellites.

Figure 9 shows the result of running constraint C3c in its query form. As can
be gathered either from the textual list on the left or the graphical representa-
tion on the right, there are two classes in dimension LegalEntities and four classes
in dimension Artifacts that have been identified as local roots within a dimen-
sion that does not comprise a single classification cluster, i.e., a classification
hierarchy in which all classifiers are connected to a unique root. Challenging
a modeler to come up with such a unique root per dimension may help the
modeler to confirm that all classifiers in a dimension form a coherent cluster,
as opposed to being a loose collection of disjointed concerns. In this example
model, this could be accomplished by adding ArtifactType and LegalEntityType

respectively to the affected dimensions and declaring the reported elements as
their instances respectively.

22

Figure 9: Running the C3c DisjointClusterRoots query on the satellite model

5.2. Relationships

Although we could have included relationships in Figure 8 already, we chose
to present them separately for clarity (see Figure 10). The embedded association
between Satellite and Software Artifact enables satellite representations and soft-
ware artifacts to be linked by embedded links. See GioveA r1 & GioveA v1 being
linked to SatCtrlcomm, reflecting the fact that the software is embedded in both
the physical satellite and its digital twin.

Likewise, the owner association between Artifact and LegalEntity enables ar-
tifacts to be linked to their owners. For instance, both SatCtrlcomm and De-

tumbA1v1 are owned by PeterS. Note that ownership can not only be expressed
between individual satellite representations and their owners, but also between
a specification, such as GioveA1, and its owner, the institution ACME.

Finally, the reflexive association depOn of Artifact allows one to specify a
dependency network between artifacts [39], e.g., a dependency between SatCtrl-

comm and DetumbA1v1. Likewise, the simulation model DetumbA1v1 depends on
the digital twin GioveA v1, as it uses its mass value as a simulation parameter.

Overall, our example model illustrates how the MdM approach supports
the separation of various concerns—satellite modeling, artifact organization,
and ownership—ensuring that each concern is free of a large class of structural
soundness issues, while allowing each concern to be applied to any of the others,
including future uses to other domains. We furthermore demonstrate how MdM
supports a single relationship kind, e.g., concerning ownership, to be defined
only once, but be soundly applied across multiple levels within a dimension, such
as Satellites. Links between elements, may, but do not have to, cross dimension
borders, depending on where the link participants are located. See, for instance,
the intra-dimension link depOn between SatCtrlcomm and DetumbA1v1, vs the
inter-dimension link depOn between DetumbA1v1 and GioveA1 v1.

23

Figure 10: Satellite model relationships in ConceptBase

6. Performance

Constraint execution efficiency was far from a priority for us but we never-
theless investigated

• whether ConceptBase’s deductive database engine is sufficiently perfor-
mant to support the validation of approaches like MdM, i.e., those that
imply the checking of global model properties.

• to what extent constraint evaluation times differ from each other, in or-
der to see whether that would reveal anything about the nature of the
constraints or untapped optimization potential of ConceptBase.

• how ConceptBase’s various evaluation alternatives compare to each other
in terms of evaluation speed, when MdM constraints are subjected to
MdM models.

Note that the following results are specific to ConceptBase, i.e., they should not
be construed to have any bearing on results one may expect from an equivalent
formalization in other systems, such as Flora-2 [40] or XSB-Prolog [41].

Although we have made various performance measurements throughout de-
velopment, in this section we focus on the results of evaluating the example
model from Section 5 since it was the most suitable to highlight performance
differences between constraints and/or the evaluation alternatives supported by
ConceptBase.

24

ConceptBase offers three choices for evaluating well-formedness conditions:

Ec1: constraints (e.g., Listing 8) are loaded before a model is loaded/created.
Each part (i.e., fact) of a model is then incrementally evaluated against
the constraints. A constraint is only evaluated, if the addition or removal
of a model fact may influence its evaluation. This is the standard approach
when using ConceptBase and makes evaluation of constraints mandatory.

Ec2: constraints are added after the model has been loaded/created. Each
constraint is then evaluated for the whole model. This alternative is not
well-supported by ConceptBase since once constraints are loaded, they
are mandatorily applied upon subsequent changes to the model, i.e., the
approach effectively reverts to Ec1, after the constraints have been added.

Eq: checks are run as queries (e.g., Listing 9) on demand. Unlike for Ec1 & Ec2,
if queries are used to detect well-formedness issues, models may violate
well-formedness conditions at any point in time. Queries are only ever run
if and when requested by the user.

Ec1 is best for users for whom well-formedness of models is of paramount im-
portance at all times and who like to be informed of constraint violations at
the earliest time possible. Ec2 also always evaluates all constraints, but only at
a point of the user’s choosing and may in some cases be a quicker alternative
for checking complete models (cf. Table 1). Eq provides users with the most
flexibility, allowing them to specifically target certain properties when required,
e.g., after a modeling phase has been completed.

Listings 8 & 9 show how we implemented constraint C2a as a ConceptBase

constraint and query respectively.

1 c2a: $ forall x/Element p1,p2/Integer lab1,lab2/Label
2 (x potency/lab1 p1) and (x potency/lab2 p2) and
3 (lab1 <> lab2) and (p1 > 0) ==> (p2 = 0) $

Listing 8: C2a as a ConceptBase constraint

While Listing 8 shows a straightforward translation of constraint C2a’s for-
mal definition, the query in Listing 9 deviates from a direct translation in two
aspects, so that it can report all non-compliant elements:

1 C2a_MultipleNonZeroPotency in QueryClass isA Element with
2 constraint
3 multinonzero: $ exists p1,p2/Integer lab1,lab2/Label
4 (this potency/lab1 p1) and (this potency/lab2 p2) and
5 (lab1 <> lab2) and (p1 > 0) and (p2 > 0) $
6 end

Listing 9: C2a as a ConceptBase query

First, in contrast to the constraint, the query expression has to identify a viola-
tion, as opposed to describing the well-formed case; note the different quantifi-
cation required, the change from an implication to a conjunction, and compare
(p2 = 0) of the constraint to (p2 > 0) within the query.

25

Second, the query expression has to identify which of the elements involved
is to be identified as becoming part of the query result set. In this case, it is
element “x” of Listing 8, i.e., an element with more than one non-zero potency,
that needs to be reported. This identification is accomplished by the use of
“this”, which is implicitly existentially qualified and in this case replaces every
occurrence of “x” in the constraint variant.

Both evaluation alternatives Ec2 and Eq may potentially benefit from cached
evaluation results that were created when evaluating the same or a different
constraints/queries earlier. In contrast, Ec1 may only benefit from cache results
that are produced while evaluating constraints in response to the addition or
removal of a single model fact. To allow for a better comparison of the evalu-
ation alternatives, we therefore evaluated constraints individually, as opposed
to appliying them as a set, and cleared the cache for Ec2 & Eq, before each
individual run. As a result, the total figures at the bottom of Table 1 are the
sums of individual evaluation times, not the total time needed when evaluating
all constraints in combination. The evaluation times1 of Table 1 where obtained
using the satellite model of Section 5.

Table 1: Evaluation times for the satellite model (in seconds)

Constraint Ec1 Ec2 Eq

C0a 0.02 0.30 0.01

C0b 0.01 0.21 0.01

C1 1.48 0.63 0.99

C2a 0.01 <0.01 <0.01

C2b 0.30 0.63 0.57

C2c 0.18 0.20 0.19

C3a 0.02 0.32 0.29

C3b 0.01 0.21 0.18

C3c 0.05 0.02 0.34

C4a 0.51 0.54 0.50

C4b 1.69 0.55 0.53

C4c 1.47 0.77 0.69

Total 5.75 4.38 4.30

While Ec1 is generally fast and often beats the alternatives, it takes moder-
ately longer for C4b and C4c, both of which imply order consistency checking.
We make further observations regarding implementation performance in Sec-
tion 7.2.2.

1Measurements made using an Intel Core i9-11950H.

26

7. Discussion

In the following, we first discuss our formalization choices and the conse-
quences resulting from them. In Section 7.2 we then discuss the merit of Con-

ceptBase as a supporting tool.

7.1. Formalization Discussion

The MdM article our work is based on [12], proposed four informally de-
scribed C1–C4 “constraints” that outline a minimalistic realization of the ap-
proach. They are rather constraint categories, each of which typically requiring
multiple formal constraints to be covered, hence the use of our sublabels a, b,
etc. Whenever constraint definitions called for precision that was not detailed in
the informal descriptions or generalizations seemed logical, we were often able
to improve or expand on the informal design. In particular, we

• generalized the exclusion of classifier feature clashes (C1) to include su-
pertype feature clashes (cf. constraint C1).

• generalized the prohibition to instantiate a “bottom-level” element par-
ticipating in multiple dimensions into more than one dimension (C2), to
include elements at the top level. The latter may entertain potencies
from multiple dimensions and should not be instantiatable into multiple
dimensions either (cf. constraint C2a).

• not only exclude cycles within classification- and generalization hierarchies
respectively (C4), but also exclude cycles comprising mixed relationships
of the former kinds (cf. constraint C4a).

• explicitly support dimension underspecification, i.e., allow dimensionless
relationships and/or elements without explicit potencies.

We retained the absence of explicit “levels” and element-“order” notions from
the original design, which makes the approach agnostic to the presence or ab-
sence of such notions in the model, and even the language specification. In
particular, we infer order differences from classification relationships without
relying on pure classification hierarchies, i.e., interspersed generalization rela-
tionships do not interfere with the determination of relative order values. This
design elegantly targets the root cause of soundness violations all the same and
could be regarded as avoiding overspecification in comparison to a level-based
approach. However, this also obviously means that we do not support explicit
“order” assignments or “level” allocations which could be checked for consis-
tency with the rest of the model. On the plus side, this makes the approach
straightforwardly adoptable to any technology that does not rely on explicit
level or order values.

27

7.1.1. Generality

Compared to our initial attempt at covering C4 from [15], constraint C4b

now detects a considerably larger class of ill-formed models, by covering indi-
rect “instance Of” relationships as well. Furthermore, via an improved version
of constraint C4c, we can now detect inconsistencies which are caused by in-
stantiation paths to a shared element which differ in length. Again, these paths
may include indirect classification, i.e., checking is not limited to incarnation
trees/graphs only. These significantly improved versions cover a larger class of
sources for order inconsistencies while still allowing a concise constraint formu-
lation and efficient evaluation. Unlike in our earlier work, we therefore do not
have to categorically rule out multiple classification within a dimension in order
to make sure that classification hierarchies are “level-respecting”.

In its original formulation [16], the “level-respecting” well-formedness condi-
tion implied that comparing the lengths of instantiation paths is required.

level respecting ∀n,m :

(∃ e1, e2 : e1R
ne2 ∧ e1R

me2) → n = m

In the above, “R” is a placeholder for a metarelation and in our case it translates
to classification. The respective ConceptBase implementation would therefore
have to look similar to the hypothetical code in Listing 10, assuming that the
“ˆ” notation allows one to capture the length of an instantiation path between
two elements in a classification branch.

1 $ forall n, m/Integer exists e1,e2/Element
2 (e1 instanceOfˆn e2) and (e1 instanceOfˆm e2) ==> n = m $

Listing 10: Level-respecting

However, ConceptBase does not support specifying path lengths in the above
manner. While some of our other constraints make use of transitive instantia-
tion chains, the constraints are agnostic about the lengths of such chains. We
addressed this challenge by observing that the requirement of identical path
lengths can be transposed into a requirement about the existence of a synchro-
nized traversal of both paths. There is no need to actually determine the number
of edges in paths, since it is sufficient to require that both paths can be tra-
versed in lock-step, starting from one element (e1) and arriving, with the same
final step, at the shared classification ancestor (e2). This strategy allowed us
to formulate predicate orderNotInconsistentd as a ConceptBase rule and thus
use the latter in constraint C4c. We therefore successfully settled the hitherto
unanswered question whether ConceptBase affords sufficient expressiveness to
formalize the “level-respecting” requirement.

The advantage for modelers is that our implementation now allows them to
use multiple classification within a dimension, but only if it does not introduce
soundness issues by involving “diamond-shaped” classification hierarchies with
inconsistent path lengths, as the latter would imply conflicting order values for
an element at the bottom of such a diamond structure.

28

(a) Anti-Pattern 1

Food

Waffle

EggWaffle

(b) Anti-Pattern 2

HeavyEquipment Excavator

(c) Anti-Pattern 3

Park

UrbanPark

CentralParkCrawlerExcavator

Figure 11: Wikidata Anti-Pattern Scenarios (cf. [18, Fig. 6, Fig. 8, Fig. 10])

7.1.2. MdM Well-Formedness vs Anti-Patterns

In [18], Brasilero et al. analyze Wikidata content with respect to prob-
lematic model fragments. Without fully exploiting their underlying axiomatic
theory, they formulate three anti-patterns as SPARQL queries to quantify cer-
tain modeling issues in Wikidata. Given that these anti-patterns were derived
independently from the MdM well-formedness principles, we were interested
in whether our formalization and implementation would subsume the detection
abilities of the anti-patterns AP1–AP3 presented in [18].

Figure 11 shows three Wikidata model fragments, which exemplify violations
captured by the three anti-patterns Brasilero et al. used. In general, anti-
patterns represent schemata, i.e., will detect a wide range of unsound model
fragments, not just specific scenarios. For instance, the generalization hierarchy
involving Food and EggWaffle in Figure 11(a), could involve arbitrarily many
generalization relationships; as long as a classification relationship between these
two elements exists, the model is not sound.

Our well-formedness rules cover all the scenarios detected by anti-patterns
AP1–AP3, plus many more. On close inspection, it is clear why this has to be
the case: There is a single reason as to why AP1 & AP2 appropriately reject
offending models: elements that are connected via generalization relationships,
must have the same order; otherwise, no sound set-theoretic interpretation of
the respective model exists. Our constraint C4b simultaneously covers AP1
& AP2, and more anti-patterns that could be formulated, since it targets the
root cause that underlies the validity of these anti-patterns, i.e., the fact that a
classification relationship between elements in the same generalization hierarchy
is irreconcilable with the need for these elements to have the same order. Unlike
AP1, for instance, constraint C4b also rejects models like that in Figure 11(a)
where the classification relationship is reversed, i.e., where Food is declared to
be an instance of EggWaffle, or where a classification relationship exists between
any elements in the generalization hierarchy, not just the bottom and the top
ones. Likewise, constraint C4c takes care of AP3 violations in a very general
manner: it ensures that all instantiation paths between any two elements have
the same path lengths. This means that not only single-step shortcuts (like
between CentralPark and Park) are excluded, but any inconsistent combination,
such as three steps vs four steps to a shared ancestor, etc.

29

We observed that the anti-pattern scenario variations we considered in our
constraint validation process sometimes violated more than one constraint. This
appears to testify to a useful robustness quality of a sanity-checking approach
that covers multiple soundness principles. For instance, the aforementioned
variation of AP1 in Figure 11(a) (with the classification relationship inverted),
violates both constraints C4a & C4b.

It should be noted, that the anti-patterns used in [18, 19] were solely used as
queries to search for certain ill-formed model fragments and hence should not
be judged as attempting to comprehensively cover potential integrity violations
or be regarded as reflecting the capabilities of MLT∗. These anti-patterns were
only inspired by the latter’s respective axiomatic theory. However, regardless
of the original intent for using anti-patterns, we note that for the purposes of
ensuring the well-formedness of models, an approach based on constraints, which
embody fundamental soundness principles, seems more suitable than a collection
of schemata that were devised on the basis of found integrity violations. The
model in Figure 12 supports this conjecture.

HeavyEquipment

CrawlerExcavator

EquipmentType

Excavator

SlowExcavator

Figure 12: Unsound model invisible to anti-patterns AP1–AP3

The “instanceOf” relationship marked with the red cross in Figure 12 would
imply that SlowExcavator has a different order than HeavyEquipment (which shares
the same order with Excavator) and thus make it unsound for CrawlerExcavator

to specialize both HeavyEquipment and SlowExcavator. Our C4b constraint detects
this inconsistency but none of the anti-patterns AP1–AP3 do.

Overall, we did not attempt to capture a full-fledged language design that
addresses all possible design choices, e.g., we did not impose limitations on
specializations into multiple dimensions. Our only intention was to capture the
constraint categories C1–C4 of [12].

30

7.2. Implementation Discussion

The motivation for creating an implementation (see Section 4) included the
aim to understand how well ConceptBase can support a language design like
MdM. In the following we discuss the merit of ConceptBase for this task and
also briefly comment on how the availability of an implementation supported
our formalization efforts (see Section 7.2.5).

7.2.1. Expressiveness

It is remarkable how close ConceptBase constraints (e.g., Listing 5) are
to a concise logic formulation (cf. C4b). There is some contamination of the
pure logic with some realization details due to the need to distinguish between
dimension objects and their corresponding labels but overall the ConceptBase

constraints are very readable and effortlessly supported experimentation.
Adequately supporting the “level-respecting” property without limiting user

models (cf. Section 7.1.1) required a second iteration but once we found the
right approach, the implementation was very straightforward.

7.2.2. Efficiency

ConceptBase’s evaluation of rules and constraints is not sufficiently efficient
to support all MdM constraints at the O-Telos level, at least not when us-
ing Ec1(see Section 6). We therefore let our constraints range over a dedicated
Element class instead of the O-Telos class Individual and let some rules range
over DimensionLabel instead of Label—the former matches only MdM dimen-
sion lables, wheres the latter matches all labels, including O-Telos labels—
to achieve practical evaluation times. Employing Element and DimensionLabel,
rather than Individual and Label, reduced the number of possible values for cer-
tain variables, and hence the size of the search space, without changing the
semantics of the formulas. The only downside of this optimization is that not
all MdM well-formedness constraints cannot readily be applied to O-Telos
models in general, since the latter are not using Element and DimensionLabel.

Given these domain restrictions, our small validation scenarios are checked
very swiftly. Checking medium-sized models, like the example model of Sec-
tion 5, does not complete instantly but does not take longer than 4 to 6 seconds
for all twelve constraints depending on the evaluation strategy.

These performance results were partly achieved by adding a new optimiza-
tion rule to the ConceptBase code. Prior to this optimization, the generated
code for some constraints used a suboptimal sequence of join operations of in-
stantiation/specialization predicates.

Without the aforementioned optimizations, some constraints took several
minutes to complete with the Ec1 method. Overall, a speedup factor between 10
and 20, depending on the evaluation method, specifically for constraints C1, C4b,
and C4c was achieved. For example, the evaluation of constraint C1 against the
complete MdM model of Section 5 initially required 160 seconds and is now
completed in 1.48 seconds. The results confirm that even approaches like MdM,
that imply checking global model properties, can be efficiently implemented with
a deductive system such as ConceptBase.

31

7.2.3. Usability

We paid a limited amount of attention to usability concerns since our em-
phasis was on exploring the feasibility of formalizing MdM constraints using
ConceptBase, as opposed to creating a feature-complete, working environment.
Optimizing model loading times, allowing model elements to be highlighted as
problematic on demand (rather than outright rejecting the model as ill-formed),
and advanced visualization features, such as rendering potencies as superscript
values, therefore were not priorities for us. Overall, we treated ConceptBase

mainly as a user model storage backend, as opposed to an environment with
extensive support for interactive modeling.

Having said that, we support visual presentation of dimensions (cf. Figures 7,
8, and 10), color-coding of relationships with respect to the dimensions they
participate in, and a compact visualization of concepts with their properties.
Our implementation inherits ConceptBase properties, such as the ability to
handle models of considerable size, create models textually or with a graphical
editor, ensure the well-formedness of accepted models, and report any well-
formedness violations with user-friendly messages.

7.2.4. Constraints vs Queries

As mentioned in Section 6, one may formulate a well-formedness condition
as a ConceptBase constraint or a ConceptBase query. Since the regular modus
operandi, when using ConceptBase, is to define constraints in a module that
is loaded before one loads or creates a new model, and constraints are uncon-
ditionally evaluated by ConceptBase whenever a model element is added or
changed, one straightforward approach to divide up well-formedness conditions
into constraints and queries is to formulate those that are essential to model
soundness as constraints. In our case only those constraints with a C0 or C4

prefix are absolutely required to ensure model soundness. In contrast, the con-
straints with a C2 prefix are meant to enforce a simple MdM language design
which avoids models whose semantics are of yet undefined. Constraints C3a

& C3b allow users to remove multiple classification and/or generalization from
the allowed modeling constructs, but since in this improved version of the for-
malization we were able to introduce constraint C4c and have constraint C1,
those two C3 constraints are no longer necessary to ensure model soundness.
Constraint C3c should be useful to motivate modelers to double check whether
their dimensions are coherently defined (cf. Sections 3 & 4.4) but, like its C3

siblings, does not constitute a necessary condition for model soundness.
Apart from performance considerations (cf. Section 6) and the above point

on necessity of enforcement, there are two further criteria one may consider
when deciding between expressing a well-formedness condition as a constraint
or a query: Using queries, one is able to

1. work with unsound models, which can be useful during editing, creating
and storing models that are supposed to violate well-formedness rules, etc.

2. identify model elements as the source of an issue by having them high-
lighted in the model editor.

32

When ConceptBase reports a constraint violation, it only states the names of
involved model elements, whereas the result of a query can be made to visually
highlight respective elements in the model.

Note, however, that this feature may also be regarded as creating an addi-
tional responsibility for the designer of a query. While Constraints C3a & C3b

naturally translate into queries that report a minimal amount of elements that
cause a violation, this is not the case for constraint C3c. Starting from a formu-
lation as a ConceptBase constraint (see Listing 11), the straightforward way of
expressing it as a ConceptBase query would result in Listing 12. This, however,
would result in all elements within a dimension to be reported, as long as the
condition of a single classification cluster is not met.

1 c3c: $ forall lab/Label
2 (exists u,v/Element (u instanceOf/lab v)) ==>
3 (exists c/Element
4 (forall x,y/Element (x instanceOf/lab y)
5 ==> (x instanceOf_trans/lab c))) $;

Listing 11: C3c constraint

1 C3c_DisjointElements in QueryClass isA Element with
2 constraint
3 disjointDim: $ exists x0/Element lab/Label
4 ((x0 instanceOf/lab this) or (this instanceOf/lab x0)) and
5 not (exists c/Element (forall x,y/Element
6 (x instanceOf/lab y) ==> (x instanceOf_trans/lab c))) $
7 end

Listing 12: Straightforward C3c query

Since being presented with every element participating in a classification
relationship within a dimension that violates constraint C3c would be rather
overwhelming for the modeler and not constitute any information beyond that
the classification structure in the dimension does not form a single classification
cluster, we designed an alternative query (see Listing 13) that only returns
the roots of the cluster fragments presented in the dimension. These are the
elements that would have to be connected to a common classifier in order to
address the violation, or, alternatively, would have to form unique roots in
freshly created dimensions, in case the dimension under evaluation is deemed
to be incoherent.

1 C3c_DisjointClusterRoots in GenericQueryClass isA Element with
2 parameter, computed_attribute
3 dim: Dimension
4 constraint
5 disjointRoots: $ exists lab/Label
6 (this in TopInDimension[˜dim/dim]) and Label(dim,lab) and
7 exists x0/Element (x0 instanceOf/lab this) and
8 (not exists c/Element (forall x,y/Element
9 (x instanceOf/lab y) ==> (x instanceOf_trans/lab c))) $

10 end

Listing 13: C3c query reporting offending roots only

33

Query C3c DisjointClusterRoots thus not only allows modelers to judge clus-
ter roots for coherence, but also produces a minimal set of elements that would
have to be affected when establishing a single classification cluster.

While this variant is far from being a straightforward translation of the
original constraint and requires the use of another TopInDimension query
to solely consider classification roots as potentially offending elements, we be-
lieve it can be of significant value to modelers to receive such specific results
as opposed to all the elements within a non-conforming dimension, or, alterna-
tively, the name of a non-conforming dimension only. The particular version of
C3c DisjointClusterRoots in Listing 13 also allows generalization relation-
ships to join cluster fragments, which deviates from constraint C3c but which
we present here as a refined interpretation of when a dimension cluster should
be considered to be disjoint.

In order to afford users with utmost flexibility, we provide all well-formedness
constraints as both ConceptBase constraints and ConceptBase queries [34].
Users can hence decide for themselves which subset of well-formedness condi-
tions should be unconditionally enforced and which should be interactively and
selectively checkable on-demand.

7.2.5. Utility for Formalization and Validation

ConceptBase proved to be very useful for validating our formalization. In
many cases, subjecting select modeling scenarios to our constraints simply con-
firmed the latter’s adequacy and/or the claimed properties of MdM. In some
cases, however, ConceptBase supported experimenting with variants, e.g., to
explore alternative formulations or achieve better evaluation efficiency. By defin-
ing a validation suite of model scenarios that target all constraints respectively,
we were able to trial tweaks and either confirm or disprove that they were still
reporting ill-formed models and not reporting sound models.

Our suggested amendment to the original C2 formulation in the form of a
slightly wider constraint C2a definition was arrived at during such constraint
validation experiments. While working with respective validation scenarios, it
seemed suboptimal to forbid the clashing of multiple potency values greater
than zero only for elements that have explicit classifiers (cf. Section 3).

The aforementioned validation suite also served as a way to empirically con-
firm that MdM’s claims regarding the mechanical detection of unsound models
are justified. We purposefully designed scenarios we deemed sound and others
we deemed unsound for various reasons, using a rough 50:50 distribution, and
our final formalization of MdM reliably produced the expected positive or neg-
ative results, including for scenarios we did not create ourselves, such as the
anti-pattern examples. Internally, we have used well over 50 models, of which
39 are included in our published regression validation suite at [34]. Model sizes
are typically very small, i.e., usually comprising not much more than six ele-
ments, but increasing element volume would not have added any further insights
beyond confirming ConceptBase’s ability to handle large models. We created
the vast majority of models ourselves and only occasionally used third-party
models, such as the anti-pattern examples.

34

8. Conclusion

The more critical the reliance on the conceptual integrity of a model is, the
higher the need to eliminate avoidable conceptual mistakes. It is concerning
that modeling concepts of societal importance, such as “gene”, “protein”, and
“disease” are used inconsistently in models [19, Table 1]. Ontological sanity-
checking of models is not a novel concept, but so far multi-level modeling users
were either forced to complicate their models by having to work around overly
strict well-formedness requirements, or were given mechanisms that circumvent
otherwise strict rules, with the potential of allowing inadvertent misapplications
with ill consequences.

In this article, we presented a formalization of an approach [12] that reliably
and independently of the modeling domain prevents a large class of ill-conceived
conceptualizations without requiring modelers to explicitly provide semantic
descriptions of the concepts they are using, and without forcing them to work
around unnecessary limitations imposed by overly strict well-formedness criteria
when modeling naturally occurring domain scenarios.

Our formalization does not rely on explicit “order” or “level” constructs,
making it widely applicable, i.e., a candidate for adoption by other multi-level
modeling approaches. Compared to our earlier work, we have given users the op-
tion to use multiple classification within a modeling dimension without reducing
the rigor of the soundness checking. We achieved this by ensuring the “level-
respecting” property in the most general way. Additionally, we significantly
improved the constraints on specialization hierarchies. Being based on funda-
mental soundness principles, rather than attempting to match ill-formed model
fragments, our implementation is not dependent on a comprehensive schematic
capturing of such fragments.

We have empirically validatedMdM claims and our implementation by using
numerous models of which the most essential form a regression validation test
suite that we made use of any time we explored a constraint variant, e.g., to
increase the scope of a constraint or improve upon its evaluation efficiency.
In many cases we additionally created a systematic exploration of scenarios,
in which, for instance, all combinations of relationship directions in specific
scenarios were explored. Our slight modification of constraint C2a and our
introduction of constraint C2c were the direct result of following such a tool-
supported and scenario-based exploration approach.

By creating a sample model for a realistic, multi-level-, multi-aspect mod-
eling domain, and running performance tests, we demonstrated that Concept-

Base is capable of supporting a concise, intuitive and sufficiently performant
implementation of MdM, while not requiring any coding at any stage. Al-
though usability was not a priority, the implementation offers decent notation
support, colored relationships, and explicit dimension containers.

We are convinced that our work is a suitable foundation for further explo-
ration of the MdM paradigm, allowing richer variants to be examined and vali-
dated. Our formalization and public implementation open up these avenues for
anyone who may want to extend or adopt the approach to fit their frameworks.

35

Acknowledgments

This work was in part supported by the Swedish Knowledge Foundation
(KKS) through its VF-KDO Profile research project, grant number 20180011.
We are grateful to the anonymous reviewers whose in-depth feedback led to
considerable improvements.

References

[1] A. Pirotte, E. Zimányi, D. Massart, T. Yakusheva, Materialization: A
powerful and ubiquitous abstraction pattern, in: Proceedings of the 20th

International Conference on Very Large Data Bases (VLDB’94), Morgan
Kaufman, 1994, pp. 630–641.

[2] C. Partridge, S. de Cesare, A. Mitchell, J. Odell, Formalization of the
classification pattern: survey of classification modeling in information sys-
tems engineering, Software & Systems Modeling 17 (1) (2018) 167–203.
doi:10.1007/s10270-016-0521-5.

[3] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis, Telos: Representing
knowledge about information systems, Information Systems 8 (4) (1990)
325–362.

[4] M. A. Jeusfeld, B. Neumayr, DeepTelos: Multi-level modeling with most
general instances, in: Conceptual Modeling - 35th International Confer-
ence, ER 2016, Gifu, Japan, November 14-17, 2016, 2016, pp. 198–211.
doi:10.1007/978-3-319-46397-1_15.

[5] C. Atkinson, T. Kühne, Rearchitecting the UML infrastructure, ACM
Transactions on Modeling and Computer Simulation 12 (4) (2003) 290–
321.

[6] G. Guizzardi, It’s patterns all the way down: Ontological patterns, anti-
patterns and pattern languages for next-generation conceptual modeling,
ACM Lecture (2020).
URL https://speakers.acm.org/lectures/13930

[7] C. Atkinson, T. Kühne, Reducing accidental complexity in domain models,
Software and Systems Modeling 7 (3) (2008) 345–359. doi:10.1007/
s10270-007-0061-0.

[8] C. Atkinson, Meta-modeling for distributed object environments, in: En-
terprise Distributed Object Computing, IEEE, 1997, pp. 90–101.

[9] R. Gitzel, M. Merz, How a relaxation of the strictness definition can benefit
MDD approaches with meta model hierarchies, in: Proceedings of the 8th

World Multi-Conference on Systemics, Cybernetics & Informatics, Vol. IV,
2004, pp. 62–67.

36

https://doi.org/10.1007/s10270-016-0521-5
https://doi.org/10.1007/978-3-319-46397-1_15
https://speakers.acm.org/lectures/13930
https://speakers.acm.org/lectures/13930
https://speakers.acm.org/lectures/13930
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0

[10] J. de Lara, E. Guerra, R. Cobos, J. Moreno-Llorena, Extending deep meta-
modelling for practical model-driven engineering, The Computer Journal
57 (1) (2012) 36–58. doi:10.1093/comjnl/bxs144.

[11] U. Frank, Multilevel modeling - toward a new paradigm of conceptual mod-
eling and information systems design, Business & Information Systems En-
gineering 6 (6) (2014) 319–337. doi:10.1007/s12599-014-0350-4.

[12] T. Kühne, Multi-dimensional multi-level modeling, Software and
Systems Modeling 21 (2) (2022) 543–559. doi:10.1007/
s10270-021-00951-5.

[13] B. Neumayr, M. A. Jeusfeld, M. Schrefl, C. Schütz, Dual deep instantiation
and its ConceptBase implementation, in: Proceedings Advanced Informa-
tion Systems Engineering CAiSE 2014, Springer Int. Publ., Cham, 2014,
pp. 503–517.

[14] M. A. Jeusfeld, J. P. A. Almeida, V. A. Carvalho, C. M. Fonseca, B. Neu-
mayr, Deductive reconstruction of MLT* for multi-level modeling, in: Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, MODELS
’20, 2020, pp. 1–10. doi:10.1145/3417990.3421410.

[15] T. Kühne, M. A. Jeusfeld, Sanity-checking multiple levels of classifica-
tion: A formal approach with a conceptbase implementation, in: Con-
ceptual Modeling: 42nd International Conference, ER 2023, Lisbon, Por-
tugal, November 6–9, 2023, Proceedings, Springer-Verlag, Berlin, 2023, p.
162–180. doi:10.1007/978-3-031-47262-6_9.

[16] T. Kühne, Matters of (meta-) modeling, Software and System Modeling
5 (4) (2006) 369–385. doi:10.1007/s10270-006-0017-9.

[17] C. Partridge, A. Mitchell, M. da Silva, O. X. Soto, M. West, M. Khan,
S. de Cesare, Implicit requirements for ontological multi-level types in the
uniclass classification, in: Companion Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Sys-
tems, MODELS ’20, 2020, pp. 1–8. doi:10.1145/3417990.3421414.

[18] F. Brasileiro, J. P. A. Almeida, V. A. Carvalho, G. Guizzardi, Applying
a multi-level modeling theory to assess taxonomic hierarchies in Wikidata,
in: Proceedings of the 25th International Conference Companion on World
Wide Web, WWW ’16 Companion, Int. WWW Conferences Steering Com-
mittee, 2016, pp. 975–980. doi:10.1145/2872518.2891117.

[19] A. A. Dadalto, J. P. A. Almeida, C. M. Fonseca, G. Guizzardi, Type or
individual? Evidence of large-scale conceptual disarray in Wikidata, in:
Proceedings of Conceptual Modeling - 40th International Conference, ER
2021, Vol. 13011 of LNCS, Springer, 2021, pp. 367–377. doi:10.1007/
978-3-030-89022-3_29.

37

https://doi.org/10.1093/comjnl/bxs144
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.1007/s10270-021-00951-5
https://doi.org/10.1007/s10270-021-00951-5
https://doi.org/10.1145/3417990.3421410
https://doi.org/10.1007/978-3-031-47262-6_9
https://doi.org/10.1007/s10270-006-0017-9
https://doi.org/10.1145/3417990.3421414
https://doi.org/10.1145/2872518.2891117
https://doi.org/10.1007/978-3-030-89022-3_29
https://doi.org/10.1007/978-3-030-89022-3_29

[20] OMG, Unified Modeling Language Superstructure Specification, Version
2.1.1, OMG document formal/07-02-05 (Feb. 2007).

[21] C. Atkinson, R. Gerbig, Melanie: Multi-level modeling and ontology engi-
neering environment, in: Proceedings of Modeling Wizards’12, ACM, 2012,
pp. 1–2.

[22] A. Lange, C. Atkinson, Multi-level modeling with LML – A contribution
to the multi-level process challenge, International Journal of Conceptual
Modeling 17, special Issue: Multi-Level Process Challenge (Jun. 2022).
doi:https://doi.org/10.18417/emisa.17.6.

[23] T. Kühne, A. Lange, Melanee and DLM: A contribution to the MULTI
collaborative comparison challenge, in: Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, ACM, NY, USA, 2022, p. 434–443.
doi:10.1145/3550356.3561571.

[24] J. P. A. Almeida, C. M. Fonseca, V. A. Carvalho, Comprehensive formal
theory for multi-level conceptual modeling, in: Proceedings of 36th Inter-
national Conference on Conceptual Modeling, Vol. LNCS 10650, Springer,
2017, pp. 280–294.

[25] C. M. Fonseca, J. P. A. Almeida, G. Guizzardi, V. A. Carvalho, Multi-level
conceptual modeling: From a formal theory to a well-founded language, in:
Proceedings of the 37th International Conference on Conceptual Modeling
(ER 2018), LNCS 11157, Springer Verlag, 2018, pp. 409–423.

[26] C. Atkinson, T. Kühne, Concepts for comparing modeling tool architec-
tures, in: L. Briand (Ed.), Proceedings of the ACM/IEEE 8th MODELS,
Springer Verlag, 2005, pp. 398–413.

[27] T. Kühne, A story of levels, in: Proceedings of the MODELS 2018 Work-
shops co-located with the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS’18), Vol.
Vol-2245 of CEUR Proceedings, ISSN 1613-0073, 2018, pp. 673–682.

[28] T. Kühne, Exploring potency, in: ACM/IEEE 21th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS ’18),
ACM, 2018, pp. 2–12. doi:10.1145/3239372.3239411.

[29] C. Atkinson, T. Kühne, The essence of multilevel metamodeling, in: Pro-
ceedings of the 4th International Conference on the UML 2000, Toronto,
Canada, LNCS 2185, Springer Verlag, 2001, pp. 19–33. doi:10.1007/
3-540-45441-1_3.

[30] M. A. Jeusfeld, Metamodeling and method engineering with ConceptBase,
in: Metamodeling for Method Engineering, MIT Press, 2009, pp. 89–168.
URL https://conceptbase.sourceforge.net/2021 Metamodeling for
Method Engineering.pdf

38

https://doi.org/https://doi.org/10.18417/emisa.17.6
https://doi.org/10.1145/3550356.3561571
https://doi.org/10.1145/3239372.3239411
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1007/3-540-45441-1_3
https://conceptbase.sourceforge.net/2021_Metamodeling_for_Method_Engineering.pdf
https://conceptbase.sourceforge.net/2021_Metamodeling_for_Method_Engineering.pdf
https://conceptbase.sourceforge.net/2021_Metamodeling_for_Method_Engineering.pdf

[31] M. A. Jeusfeld, What is O-Telos?, accessed 2024-03-04: https://
conceptbase.sourceforge.net/O-Telos.html (1999).

[32] M. Koubarakis, A. Borgida, P. Constantopoulos, M. Doerr, M. Jarke, M. A.
Jeusfeld, J. Mylopoulos, D. Plexousakis, A retrospective on Telos as a
metamodeling language for requirements engineering, Requir. Eng. 26 (1)
(2021) 1–23. doi:10.1007/s00766-020-00329-x.

[33] S. Abiteboul, R. Hull, Data functions, Datalog and negation, SIGMOD
Rec. 17 (3) (1988) 143–153. doi:10.1145/971701.50218.

[34] M. A. Jeusfeld, T. Kühne, ConceptBase implementation of MdM,
Project Web Site (2025).
URL https://purl.org/cbmdm

[35] S. J. Hu, Evolving paradigms of manufacturing: From mass production
to mass customization and personalization, Procedia CIRP 7 (2013) 3–8,
46th CIRP Conference on Manufacturing Systems 2013. doi:10.1016/
j.procir.2013.05.002.

[36] Mercedes-Benz, Mercedes-Benz information for bodybuilders, Webpage,
last accessed: 28 March 2024 (2024).
URL https://trucks.mercedesbenzmena.com/leading-star/en/
applications/bodybuilder/

[37] P. M. Fischer, D. Lüdtke, C. Lange, F.-C. Roshani, F. Dannemann,
A. Gerndt, Implementing model-based system engineering for the whole
lifecycle of a spacecraft, CEAS Space Journal 9 (2017) 351 – 365. doi:
10.1007/s12567-017-0166-4.

[38] I. Morshedzadeh, A. H. C. Ng, M. A. Jeusfeld, J. Oscarsson, Managing
virtual factory artifacts in the extended PLM context, J. Ind. Inf. Integr.
28 (2022) 100369. doi:10.1016/j.jii.2022.100369.

[39] M. Jarke, M. A. Jeusfeld, T. Rose, A software process data model for
knowledge engineering in information systems, Inf. Syst. 15 (1) (1990) 85–
116. doi:10.1016/0306-4379(90)90018-K.

[40] G. Yang, M. Kifer, C. Zhao, Flora-2: A rule-based knowledge represen-
tation and inference infrastructure for the semantic web, in: R. Meers-
man, Z. Tari, D. C. Schmidt (Eds.), ODBASE 2003, Catania, Sicily, Italy,
November 3-7, 2003, Vol. 2888 of Lecture Notes in Computer Science,
Springer, 2003, pp. 671–688. doi:10.1007/978-3-540-39964-3_43.

[41] XSB, XSB Prolog, Website, last accessed: 28 March 2024 (2023).
URL https://xsb.com/xsb-prolog/

39

https://conceptbase.sourceforge.net/O-Telos.html
https://conceptbase.sourceforge.net/O-Telos.html
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.1145/971701.50218
https://purl.org/cbmdm
https://purl.org/cbmdm
https://doi.org/10.1016/j.procir.2013.05.002
https://doi.org/10.1016/j.procir.2013.05.002
https://trucks.mercedesbenzmena.com/leading-star/en/applications/bodybuilder/
https://trucks.mercedesbenzmena.com/leading-star/en/applications/bodybuilder/
https://trucks.mercedesbenzmena.com/leading-star/en/applications/bodybuilder/
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1016/j.jii.2022.100369
https://doi.org/10.1016/0306-4379(90)90018-K
https://doi.org/10.1007/978-3-540-39964-3_43
https://xsb.com/xsb-prolog/
https://xsb.com/xsb-prolog/

	Introduction
	Sanity Checking
	Detecting Ill-Conceived Conceptualizations
	Previous Attempts
	Orthogonal Ontological Classification

	Formalization
	Implementation
	ConceptBase and O-Telos
	Module Architecture
	Realizing Multi-Dimensional Modeling with O-Telos
	C3 constraints as queries
	ConceptBase Visualization Support

	An Example Model: Digital Twins
	Classification hierarchies and attributes
	Relationships

	Performance
	Discussion
	Formalization Discussion
	Generality
	MdM Well-Formedness vs Anti-Patterns

	Implementation Discussion
	Expressiveness
	Efficiency
	Usability
	Constraints vs Queries
	Utility for Formalization and Validation

	Conclusion

